G.Guerova

Intro GNSS GPS GLONAS GALILEO GNSS station

How it works

GNSS Apps Science apps Atmosphere Earthquake Volcano Day to day apps

Conclusion

Global Navigation Satellite Systems (GNSS): GPS, GLONASS, GALILEO

Dr Guergana Guerova

Marie Curie Fellow Department of Meteorology and Geophysics Physics Faculty, Sofia University

National Culture High School, 13 November 2012, Gorna Bania, Bulgaria

G.Guerova

Intro GNSS GPS GLONAS GALILEC GNSS station How it

How it works

GNSS Apps Science apps Atmosphere Earthquake Volcano Day to day apps

onclusions

Global Navigation Satellite Systems (GNSS)

параметри	GPS	TASHACC	GALILEO	COMPASS
години	1971/1993	1976/1995	1994/2020	2000/2020
спътници	24	24	27	35
орбити	6, елипт.	З, кръгови	З, кръгови	>10
височина	20200 км	19100 км	23 222 км	21 155 км
инклинация	55°	64,8°	56°	55,5°
основни	1,58 GHz	1,61 GHz	1,57 GHz	1,56 GHz
сигнали	1,23 GHz	1,25 GHz	1,28 GHz	1,20 GHz

source: Tzvetan Simeonov's BSc thesis: "GNSS meteorology in Bulgaria" July 2011

USA: Global Positioning System (GPS)

- · Why Global Positioning System (GPS) was created
 - · Need of high-accuracy, real-time position, velocity and time on variety of platforms
 - Worldwide, all weather operation military and civilian users
- What is GPS

GNSS

overview G.Guerova

- NAVSTAR GPS satellites 24 active satellites 6 orbital planes
 - altitude 20 200 km
 - inclination 55° (with respect to the Equator)
 - orbit periods 11h 58 min
- · Ground based reference receivers
 - Europe 1700
 - Japan 1000
 - Bulgaria 120
- Control segment
 - · worldwide monitor and control stations
 - · maintain the satellites orbits
 - · maintains health and status of the satellite constellation

NAVSTAR GPS satellites

Satellite constellation

GNSS overview G.Guerova

GPS

Block IIA satellite type

source: GPS.gov http://www.gps.gov/systems/gps/space/

The GPS signal

GNSS overview

G.Guerova

- Intro GNSS GPS GLONAS GALILEC GNSS station
- How it works
- GNSS Apps Science apps Atmosphere Earthquake Volcano Day to day apps

Conclusion

• Microwave bi-phase signal

- Fundamental frequency fo = 10.23 MHz
- L1 carrying frequency with wavelength 19cm
- L2 carrying frequency with wavelength 22.4cm
- Pseudo Random Code structure
 - Navigation message low frequency signal added to L1 code 1500 bits
 - · Information about: satellite clock and satellite orbit

All satellites use the same frequencies but have different codes

source: Global Positioning System: Theory and Applications, Volume I & II, 1996, ISBN-13: 978-1-56347-249-7

G.Guerova

Intro GNSS GPS GLONASS GALILEO GNSS station

How it works

GNSS Apps Science apps Atmosphei Earthquak Volcano Day to day apps

Conclusion

RUSSIA: GLObal NAvigation Satellite System (GLONASS)

• GLONASS satellites - 24 active satellites - 3 orbital planes

- altitude 19 100 km
- inclination 64.8° (with respect to the Equator)
- orbit periods 11h 15 min

• Ground based reference receivers: mostly GLONASS compatible

- Europe 1700
- Japan 1000
- Bulgaria 120

source: http://www.glonassgsm.ru/information.html

GLONASS constellation

G.Guerova

- GNSS GPS GLONASS GALILEO GNSS
- How it
- GNSS Apps Science apps Atmospher Earthquake Volcano Day to day
- Conclusions

GLONASS/GPS constellation

GLONASS satellites

G.Guerova

GNSS GPS GLONASS GALILEO GNSS station

works

Apps Science apps Atmosphe Earthquak Volcano Day to day apps

Conclusions

1	MAL			CO TSNIMASH
_	1982	2009	2010	2013
,	Glonass	Glonass-M	Glonass-K1	Glonass-K2
	3 year design life Clock stability - 5*10 ¹³ Signals : L1SF, L2SF, L1OF, (FDMA) Totally launched 81 satellites Real operational life time 4.5 years	 7 year design life Clock stability 1*10-13; Signals : L10F, L20F, L10F, L20F (FDMA) Totally launched 28 satellites and going to launch about 11 satellite until to end 2012 	 10 year design life; Clock stability 5*10-14; Signals L1SF, L2SF, L1OF, L2OF (FDMA) L3OC (CDMA) - test: 	 10 year design life; Clock stability 1*10-14; Signals L1SF, L2SF, L1OF, L2OF (FDMA) L1OC, L3OC, L1SC, L2SC (CDMA):

GLONASS signal

GNSS overview

G.Guerova

- GNSS GPS GLONASS GALILEO GNSS station
- How it works
- GNSS Apps Science apps Atmosphe Earthquak Volcano
- Day to day apps
- Conclusions

• Each satellite has its own frequencies

- · All satellites have the same code
 - Fundamental frequency $f_o = 5 \text{ MHz}$
 - L1 band range: 1602.5625 MHz to 1615.5 MHz
 - L2 band range: 1240 MHz to 1260 MHz

	L1	L2	L3	L1, L2	Future	Status
«Gionass»	L1OF, L1SF	L2OF, L2SF	÷.,	-		Done
«Glonass-M»	L1OF, L1SF	L2OF, L2SF	12	·*		Done
«Gionass-K1»	L1OF, L1SF	L2OF, L2SF	L3OC test			From firs test sat (2010 c)
«Gionass-K2»	L10F, L1SF	L2OF, L2SF	L3OC	L10C, L1SC, L2SC		From #3 sat Gionass-I
«Gionass-KM»	L10F, L1SF	L2OF, L2SF	L3OC	L10C, L1SC, L2SC	L3SC, L10CM, L20C,	Under developm After 2015

EUROPE: GALILEO

Why GALILEO was created

- · Need of high-accuracy, real-time position, velocity and time on variety of platforms
- · Worldwide, all weather operation civilian only
- · Galileo will provide a global Search and Rescue (SAR) function

What is GALILEO

- satellites 30 active satellites 3 orbital planes
 - altitude 23 222 km
 - inclination 56° (with respect to the Equator)
 - orbit periods 14h 07 min repeat every 10 days
- · Ground based reference receivers: GALILEO compatible
 - Europe 1700
 - Japan 1000
 - Bulgaria 120

source: GALILEO at ESA

http://multimedia.esa.int/Videos/2012/10/Galileo-In-Orbit-Validation-Phase

GNSS overview

G.Guerova

- Intro GNSS GPS GLONAS GALILEO
- GNSS station
- How it works
- GNSS Apps Science apps Atmosphe Earthqual Volcano
- Day to day
- Conclusions

G.Guerova

Intro GNSS GPS GLONASS GALILEO

GNSS station

works

GNSS Apps Science apps Atmospher Earthquake Volcano Day to day apps

Conclusior

GALILEO constellation

GALILEO satellites

GALILEO satellite

GALILEO signal

GNSS overview G.Guerova

Intro GNSS GPS GLONAS GALILEO

- GNSS
- How it
- GNSS Apps Science apps Atmosph
- Earthqua
- Dav to d
- Conclusion

Microwave signal

- Fundamental frequency fo = 10.23 MHz
- E1 carrying frequency: 1575.42 MHz
- E5 carrying frequency: 1191.795 MHz
- E6 carrying frequency: 1278.75 MHz

Figure 1. Galileo, GLONASS and GPS Frequency Bands

G.Guerova

Intro GNSS GPS GLONASS GALILEO GNSS station

How it works

GNSS Apps Science apps Atmosphere Earthquake Volcano Day to day apps

Conclusions

EUREF permanent GNSS station Sofia (SOFI)

GNSS antenna GNSS receiver source: EUREF http://www.epncb.oma.be/_trackingnetwork/pictures/_large/sofi013.jpg

G.Guerova

Intro GNSS GPS GLONASS GALILEO GNSS station

How it works

GNSS Apps Science apps Atmosphere Earthquake Volcano Day to day apps

Conclusion

Measuring distances - how it works

Three measurements puts us

- · Measuring distances satellite as a reference point
 - three satellites on view

- signal travel time \sim 0.06s
- speed of light S = V t

source: Trible tutorial http://www.trimble.com/gps/howgps.shtml

G.Guerova

- Intro GNSS GPS GLONASS GALILEO GNSS station
- How it works
- GNSS Apps Science apps
- Atmospher Earthquake Volcano Day to day apps
- Conclusion

Science Applications: atmosphere

- Propagation errors in GNSS
 - ionosphere: delay in the range of 30 m
 - troposphere: 2 m delay at zenith, up to 20 m at low elevation

G.Guerova

Intro GNSS GPS GLONAS GALILEC GNSS station

How it works

Apps Science apps Atmosphere

Earthquake Volcano Day to day apps

onclusion

Science Applications: GNSS meteorology

source: Tzvetan Simeonov's BSc thesis: "GNSS meteorology in Bulgaria" July 2011

G.Guerova

Intro GNSS GPS GLONAS GALILEC GNSS station

How it works

Apps Science

Atmospher

Earthquake

Volcano Day to day apps

Conclusions

Science Applications: earthquake I

Solid Earth Studies

- crustal deformation (with support of M. Schmidt, GS Canada)
- uplifting phenomena Sweden

G.Guerova

onclusion

Science Applications: Japan 11 March 2011

source: Prof. Richard Langley's group at the University of New Brunswick, Canada available from: http://gge.unb.ca/News/2011/2011.html#JapanGPS

G.Guerova

Intro GNSS GPS GLONASS GALILEO GNSS station

How it works

GNSS Apps Science apps Atmosphere Earthquake Volcano Day to day apps

Conclusion

Science Applications: volcano monitoring

Solid Earth Studies

· monitoring volcanic activities

Day to day applications

Scientist, sportsmen, farmers, soldiers, pilots, surveyors, hikers, sailors, dispatchers, lumberjacks, fire-fighters ...

- Location and mapping (Where I am?)
 - measuring height of Mount Everest (8 850 \pm 2m) Khumbu glecier moves towards Everest's Base camp
- Navigation and tracking (Where I am going?)
 - · high tech fishing (orange fish underwater sea mounts)
 - landing plane in the middle of a mountain (Juneau Airport Alaska)
 - taking the top of the world
 - vessels and vehicle tracking police, emergency services (Chicago 911)

overview G.Guerova Intro

GNSS

GLONA: GALILE GNSS station

How it works

GNSS Apps

apps

Atmosph

Earlingua

Day to day apps

Conclusion

Conclusions

- all weather operation
- cost effective
- global coverage
- extremely accurate (~cm) for public users
- very compact

Prospective:

- Further integration in businesses cellular phones, computer networks, agriculture, car industry
- Public safety services (decreasing costs, improving service efficiency)
- Replacement of conventional measuring techniques
- Improving weather prediction, helping to monitor earthquake activities, climate change and hazardous phenomena

Soon everything will be tracked and mapped from elephants to ...

GNSS overview

G.Guerova

- Intro GNSS GPS GLONAS GALILEC GNSS station
- How it works
- GNSS Apps Science apps Atmospheri Earthquake Volcano Day to day
- Conclusions

Future constellation

G.Guerova

Conclusions

Future constellation

G.Guerova

GNSS Apps Science apps Atmosphere Earthquake Volcano Day to day apps

Conclusions

