
Maximum likelihood estimation

Given two temperature estimates, T1 and T2, valid at same lo-

cation and same time. Assume temperatures are drawn from

Gaussian probability distributions, with uncertainties σ1 and σ2.

The probability of the true temperature being T is,
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Differentiate and set to zero to find most likely value of true T,

the so-called maximum likelihood estimate,

T = T1
σ22

σ21 + σ22
+ T2

σ21
σ21 + σ22

(3)

= T1 + (T2 − T1)
σ21

σ21 + σ22
(4)

3 underlines it is a symmetrical combination of two values, with

weights depending on their uncertainty. 4 shows it as a ”correc-

tion” of one estimates, with the correction term depending the

”distance” and the uncertainties.

In meteorological data assimilation T1 would be a measure-

ment, T2 would be a model estimate. σ2 would be the uncer-

tainty of the model. σ1 would include both the uncertainty of

the observation and the error of representativeness.

The most likely value for the uncertainty of the temperature

estimate:
1

σ2
=

1

σ21
+

1

σ22
(5)

σ is always smaller than both σ1 and σ2!
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3 dimensional variational data assimilation

In 3DVar the most likely model state, given the observations

and an old forecast state, is found by minimising a cost function.

J = J1 + J2 =
1

2

(T − T1)2

σ21
+

1

2

(T − T2)2

σ22
. (6)

This is generalised to a situation with many observations, ob-

servations of different types, and information coming also from

a NWP model forecast,

J = Jb + Jo (7)

=
1

2
(x− xb)

TB−1(x− xb) +
1

2
(H(x)− y)TR−1(H(x)− y) (8)

=
1

2
(δx)TB−1δx +

1

2
(Hδx + H(xb)− y)TR−1(Hδx + H(xb)− y) )(9)

The vector δx, which minimises the cost function J , is the anal-

ysis increment, δxa. The analysis itself is then xa = xb + δxa.

The first term, Jb measures the deviation between the first guess

model state and the trial state, x, weighted by the statistical

errors of the nwp model. The second term, Jo, measures the

deviation between the observations and the prediction of the ob-

servations given trial state x, weighted by the statistical errors

of the observations, including errors of representativeness.

In meteorology the errors of the observations are in general

assumed uncorrelated. That corresponds to R being a diagonal

matrix. The errors of the model are heavily correlated. Since

the dimensions of B are enormous, being smart about B is essen-

tial. This is a big difference between NWP data assimilation and

general data assimilation. At DMI B is found by looking at the

differences in O-B offset statistics for different forecast lengths,

and projecting it on a set of functions that enable inversion of B.
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In principle the minimum of the cost function could be found

by solving,

∇J = B−1δx + HTR−1(Hδx + H(xb)− y) = 0 (10)

In practise an approximation to δxa is found by iteration, using

the expression for the gradient and a minimisation algorithm

until ”proper” convergence of the cost function is obtained.
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4 dimensional variational data assimilation

In 3DVar the observations are compared to a first guess model

state valid the time of the analysis. The observations included in

the data analysis come from a time interval centred on the time

of the analysis. If a property is measured frequently at a given

observing site the observation valid closest in time to the time

of the analysis is selected for the data analysis, the remainder

are neglected. Key meteorological observations, like radiosond-

ings, are performed simultaneously, in line with the time of the

data analyses. However, other important observations, in partic-

ular observations performed from non stationary satellites may

appear at any time during the data assimilation time window.

Using them as if the were obtained at the time of the analy-

sis will introduce errors due to the evolution of the atmospheric

state during the time between performing the observation and

the analysis.

This can be mitigated somewhat in the 3DVar scheme, by us-

ing in equation Hδx+H(xbi)−yi, where xbi is the model forecast

for time i, operating, for example with forecasts separated by 1

hour through the data analysis time window, rather than just

xb valid at the center of the time window. This method can be

considered an intermediate step between 3DVar and 4DVar.

In real 4DVar the observations are compared to the model

prediction at (or close to) the time of the observations. The cost

function now takes the form,

J = Jb + Jo (11)
1

2
(x− xb)

TB−1(x− xb) +
1

2
(Hi(xi)− yi)

TRi
−1(Hi(xi)− yi),(12)

where x is the state vector at time t0 and xi the state vector at

time ti as forecast by the model, when starting the model from

4



x at t0.

For the forecast operator we have:

xi = M0→i(x) = MiMi−1...(M1(x)), where xi = Mi(xi−1)

(13)

Assume that for realistic deviations, δx = x− xb, the following

holds:

Hi(M0→i(x))− yi ≈ HiM0→iδx + Hi(M0→i(xb))− yi, (14)

where M is the tangent linear model, corresponding to the dif-

ferential of the forecast model M , and Hi is the observation

operator for the observations at time ti and Hi is the tangent

linear of that. Then,

∇Jo =

n∑
i=0

MT
1 ...M

T
i R−1i (Hi(xi)− yi) (15)

= HT
0 d0+MT

1 [HT
1 d1 + MT

2 [HT
2 d2 + ... + MT

nHT
ndn ] ... ], (16)

where di = R−1i (Hi(xi)− yi) (17)

MT
i is called the adjoint model and Hi

T the adjoint forecast

operator.

Again the minimum of J with respect to δx defines the anal-

ysis increment.

Both 3 and 4DVar are based on static error covariance ma-

trices. More advanced assimilation, such as Kalman filtering,

enable dynamic error estimation of the error correlations, exit.

Attempts are being made to include part of the benefits from

Kalman filtering in NWP data assimilation, but the dimension

of the problem is to large to enable a genuine Kalman filtering

approach.
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Nudging

Instead of doing a statistical analysis, a fictive term forcing the

model towards an observation in introduced in the set of differ-

ential equation.

Example, the standard continuity equation,

dρ

dt
= ρ∇ ·Vx (18)

can be expanded into,

dρ

dt
= ρ(∇ ·V + ε) (19)

This is used at DMI, to include precipitation information (from

the DMI radar network) and cloud information (from geostation-

ary satellites) in the nowcasting system we are developing,

ε =
precipradar − precipnwp

τ
(20)

τ is a timescale determining the strength of the fictive forcing.

Done in such a way that mass is added low in the column and

removed high, to keep it constant. Leading to a lift, formation

of precipitation, and stronger convergence at the bottum.

While it is complicated and costly to build a 3 or 4DVar data

assimilation system, it is in certain cases very quick to introduce

nudging terms. On the other hand the stringent statistical ap-

proach used in Var is laking in nudging, and it can be difficult

to utilise observations that are not directly related to the model

variables.
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