

transforming the way the world works

Real-time Water Vapor and TEC calculation using existing GNSS reference station infrastructure

> Rana Charara Trimble Infrastructure

GNSS Netwoks

IGS International GNSS Service

Puts high-quality GNSS data and data products online in near real time.

EUREF European Permanent Network

European Terrestrial Reference System 89 (ETRS89) is used as the standard precise GPS coordinate system throughout Europe

GNSS Netwoks users

Science Behind GPS Met

Courtesy of Seth Guttman, NOAA

Trimble[®] PIVOT[™]

GNSS and the Atmosphere

Trimble Pivot Platform

– Atmo App

– Iono App

Description

Workflow in Atmosphere App (IPWV)

Trimble

	Station Name	Station Code	Tracked	Processed	Zenith Total Delay [m]	
9	FIN_Enon	Enon	19	18	2.300	
0	FIN_Haap	Наар	19	17	2.352	ing Function]
0	FIN_Hauk	Hauk	19	17	2.375	
0	FIN_lisa	lisa	19	17	2.357	
0	FIN_Ival	Ival	18	18	2.359	
0	FIN_Kaam	Kaam	19	17	2.349	
0	FIN_Kaar	Kaar	19	18	2.277	
0	FIN_Kaja	Kaja	19	18	2.336	
0	FIN_Kala	Kala	19	17	2.388	
0	FIN_Kari	Kari	19	17	2.345	
0	FIN_Keit	Keit	19	17	2.350	
0	FIN_Kemi	Kemi	18	18	2.329	
0	FIN_Kilp	Kilp	17	15	2.222	
0	FIN_Kitt	Kitt	19	18	2.336	
0	FIN_Kokk	Kokk	20	17	2.386	
0	FIN_Kola	Kola	19	18	2.344	
0	FIN_Kuhm	Kuhm	19	18	2.314	
0	FIN_Kuus	Kuus	18	18	2.281	
0	FIN_Liek	Liek	19	18	2.347	
0	FIN_Melt	Melt	18	18	2.355	
0	FIN_Muon	Muon	19	18	2.323	

Description

Weather Condition Module

- ZTD from Atmosphere Watch
- Temperature
- Pressure

- Helium balloon
- Launched twice a day from airports
- Profiles troposphere
- Data can be downloaded
- <u>http://esrl.noaa.gov/raobs/intl/GetRaobs.cgi</u>

- Performs tropospheric scans frequently
- Creates 360° x 180° degree scans
- Measures atmospheric radiation in the 20 to 60 GHz region
- www.radiometrics.com

- Surface Met Data
 - Temperature measured at GPS station location
 - Higher sampling rate compare to radiosonde
 - No need to interpolate
- Table-based model
 - More of a trend than an accurate model
 - Suitable for global networks

Weather Condition

....

Setup

Type of weather model 1	Surface met data model
Type of weather model 2	Surface met data model
Type of weather model 3	Radiosonde data model Table based model
Settings of Meteorological Surface	Radiometer data model
Model of meteorological surface dat	Interpolated
Maximum distance to location of m	500
ype of weather model 1 ne selected type of weather model to o ater Vapor (IPWV).	compute the Integrated Precipitable

Drighted Principle States Have rules

Currei

#[Year] [Month] [Day] [Hour] [M [Station code] [Number of sate] [Satellite id]; [Elevation[deg]]

#2012 09 15 00 00 00.0000000 1 0286 16 2.177 0.007 G02;42.69;311.81;3.497;0.057;1. G04;40.17;246.15;3.685;0.035;1. G05;19.98;338.43;6.971;0.216;3. G07;70.67;185.45;2.430;0.048;1. G08;32.14;216.94;4.488;0.127;2. G10;81.82;318.57;2.269;0.040;1. G13;73.98;62.12;2.371;0.031;1.0 G16;22.61;61.44;6.199;0.124;2.8 G23;35.78;82.42;4.071;0.029;1.8 R01;47.95;349.16;3.178;0.111;1. R07;23.08;127.43;6.087;0.049;2. R09;32.65;38.40;4.415;0.064;2.0 R10;77.63;109.40;2.318;0.070;1. R11;37.07;204.42;3.950;0.177;1. R17;17.71;365.20;7.806;0.240;3. R24;13.42;306.32;10.154;0.102;4

Trimble.

Comparison IPWV: TPP / Radiometer

- Station IAWL (Waterloo / Iowa)
- Apr. 16, 2013

Comparison IPWV: TPP / Weather Prediction

Oct. 5th, 2012

Comparison ZTD: TPP / BERNESE

Station MOSE-Swiss (November 24th, 2009)

26225.9, 2387.21

Atmo App View

Trimble Atmosphere

Trimble Atmosphere calculates IPWV and TEC values from gathered GNSS data including weather information from various data sources.

Station 'FIN_Puda' does not provide data to the Atmosphere Watch module(s).

- 90 of 91 Stations providing data in realtime.
- Stations providing data for post processing.

Trimble.

Atmosphere Watch	Used Tropo Mapping Function	Tropospheric Output Type + V	Processing Mode	Date of DCB Files	Min TEC Value	Max TEC Value	Last Update [GPS time]
Finland North	Modified Hopfield - Niell (dry and wet)	Zenith total delay (ZTD) - None	Real time	10.2012	6.9	21.8	04.10.2012 14:21:30
Finland South	Modified Hopfield - Niell (dry and wet)	Zenith total delay (ZTD) - None	Real time	10.2012	16.4	24.8	04.10.2012 14:21:30

Weather Condition	Used Weather Model(s)	Min IPWV Value [mm]/	Max IPWV Value [mm]	Last Update [GPS Time]
Finland North	Radiosonde data model (Age: 8 hours)	9.2	19.4	04.10.2012 14:21:30
Finland South	Radiosonde data model (Age: 2 hours)	10.9	27.6	04.10.2012 14:21:30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Longitude [*]

Description

lono App

Receiver Module / Device Manager

- · Quality check for each tracked satellite
- Overlay images with iono. activities

Iono Activity

- Iono Index
- Scintillation
- TEC Values
- IRIM
- GRIM
- 195

Scintillation Data From Receiver

 Offset between the expected difference between L1 and L2 carrier phase measurement and the actual

Quality check

Device Manager Properties

Alarm Threshold				
All stations missing	No			
Number of missing stations	3			
□ Satellite Settings				
Track unhealthy satellites	No			
Disable GPS satellites	0 satellites are disabled.			
Disable GLN satellites	0 satellites are disabled.			
Disable GAL satellites	0 satellites are disabled.			
Disable QZSS satellites	0 satellites are disabled.			
Disable COMPASS satellites	0 satellites are disabled.			
Ionospheric scintillation filter	Off 🗸			
	Off			
	High (/) Medium (5)			
	Low (3)			

Overlay Images (Macaé / Brasilia)

Overlay Images (Macaé / Brasilia)

Overlay Images (Macaé / Brasilia)

Description

Receiver Module / Device Manager

- Quality check for each tracked satellite
- · Overlay images with iono. activities

Iono Activity

- Iono Index
- Scintillation
- TEC Values
- IRIM
- 195

- TEC from Atmosphere Watch
- Scintillation Data from Receiver
- Iono results from Network Processor

- I95 Index
- IRIM (Ionospheric Residual Integrity Monitoring)
- GRIM (Geometric Residual Integrity Monitoring)

- Select GNSS Receivers
- Select Atmosphere Watch Modules
- Select Network
 Processor Modules

Iono App View

Trimble Ionosphere

Trimble lonosphere provides ionosphere activity and scintillation information for single CORS stations or GNSS networks.

The App is healthy.

- 0 Stations with a scintillation index > 5
- 0 Network Processors with 195 > 5
- 0 Stations with IRIM > 0.03 m
- 0 Stations with GRIM > 0.01 m
- 0 Stations with TEC > 30

Combined Index View

Last Update [GPS time]:

09:30:22

Station Name	Scintillation Index	TEC	lono Index	195 4	IRIM
FIN_Suom	0,1	16,6	1,4	2,5	0,04
FIN_Hauk	0,1	16,3	1,4	2,5	0,02
FIN_Enon	0,1	16,5	1,4	2,5	0,03
FIN_Kala	0,1	16,4	1,4	2,5	0,01
FIN_Vete	0,1	16,6	1,4	2,5	0,02
FIN_lisa	0,1	16,6	1,4	2,5	0,01
FIN_Keit	0,1	17,1	1,4	2,5	0,02
FIN_Melt	0,1	16,3	1,4	2,5	0,02
FIN_Savu	0,1	17,2	1,4	2,5	0,03
FIN_Nils	0,1	17,1	1,4	2,5	0,02
FIN_Nurm	0,1	17,0	1,4	2,5	0,01
FIN_Kaam	0,1	16,4	1,4	2,5	0,03
FIN_Kaar	0,1	15,2	1,3	2,5	0,03
FIN_Utaj	0,1	16,4	1,4	2,5	0,02
FIN_Kaja	0,1	16,5	1,4	2,5	0,02
FIN_Kemi	0,1	17,1	1,4	2,5	0,02
FIN_Kokk	0,1	16,4	1,4	2,5	0,02
FIN_Kitt	0,1	16,2	1,4	2,5	0,02
FIN_Kilp	0,1	14,1	1,2	2,5	0,02
FIN_Kola	0,1	15,9	1,3	2,5	0,03
FIN_Puol	0,1	16,5	1,4	2,5	0,02
FIN_Raah	0,1	16,3	1,4	2,5	0,01

• October 27th, 2012

• October 27th, 2012

• October 5th, 2012

• October 5th, 2012

• October 5th, 2012

Mobile Applications

2 Apps available:

– Pivot Admin

– Pivot Field

Gives an administrator information about the health status of his system.

Features:

- App health
- Computer health
- Favorites

Pivot Field start screen

Phone

Tablet

The information for the skyplot is coming from the Trimble Global system and not from an individual customer system.

Only buttons for satellite systems tracked for your location are shown

Network information based on the ionosphere activity module

Pivot Field - Atmosphere

Overlay is based on the atmosphere watch selected in the ionosphere activity module

Senefit

- IPWV is indicator of the water vapor
 - It gives an absolute value of water vapor
- IPWV, forecasting -> nowcasting
 - Animating it over time provides a short time prediction
- Delays, input to numerical weather models
 - GNSS-based tomography: spatial and temporal variation of water vapor
- TEC is indicator for RTK performance
 - The higher the TEC value is, the worse the RTK performance in terms of position quality and initialization time
- TEC is interesting for space weather research
 - LEO satellites may be influenced by high TEC values

- Atmosphere monitoring
- Easy understanding
- Troubleshooting
- System protection

Questions?

Contact Rana_Charara@trimble.com