Fundamentals of GNSS Processing GNSS4SWEC Summer School, Bulgaria, 2014

Hans van der Marel, TU Delft 8 September 2014

Outline

- GNSS Systems
- GPS How it works
- Pseudo-range measurement
- Carrier phase measurement
- Standard GNSS navigation solution
 - →Found in every receiver
 - →We can (must) do better than this for Earth Sciences
- GNSS error budget
 - What to do about it...?
- GNSS Carrier Phase Solution
- Integrated Water Vapour (IWV) Processing
- Differential (Relative) GNSS Baseline and Network Solutions
- International GNSS Service

• • • •

Fundamentals of GNSS Processing

GNSS SYSTEMS

GNSS4SWEC Summer School, Bulgaria, 2014 3

GNSS Overview

- Global Navigation Satellite System (GNSS) *)
 - →GPS (U.S.A.)
 - →Galileo (Europe)
 - →GLONASS (Russia)
 - →BEIDOU (China)
- Generic term for any system that provides autonomous geo-spatial positioning with global coverage
- Each system has 3 basic components
 - →Space segment (satellites)
 - Control segment (maintenance and service)
 - →User segment (receivers, etc.)

*) regional systems IRNSS,QZSS not included in overview.

<u>GPS → FOC 1995</u>

GLONASS → FOC 2010

GNSS = Global Navigation Satellite System

GALILEO → FOC 2019?

BEIDOU → FOC 2020

FOC=Full Operational

TUDelft

Constellation

GNSS Satellite Orbits

Number of satellites: #nomina

#nominal (#operational)

	GPS	GLONASS	BeiDou	Galileo
# MEO	24 (30)	24 (24)	27 (4)	30 (6)
# IGSO			3 (5)	
# GEO	WAAS/EGNOS		5 (5)	EGNOS-2

MEO orbit parameters:

	GPS	GLONASS	BeiDou	Galileo
Orbital height	20,180 km	19,130 km	21,150 km	23,220 km
Orbital period	11 h 58 m	11 h 16 m	12 h 38 m	14 h 5 m
Revs/siderial_day	2	17/8	17/9	17/10
Inclination	55°	64.8°	55°	56°

MEO = Medium Earth Orbit IGSO = Inclined Geo Synchronous Orbit GEO = Geostationary Earth Orbit WAAS, EGNOS, ... are regional augmentation systems. IRNSS,QZSS not included in overview.

GPS Satellite Ground Tracks

TUDelft

nearly circular orbits orbital period 11^h58^m 20,200 km altitude inclination 55⁰ 6 orbital planes

GNSS4SWEC Summer School, Bulgaria, 2014 8

BeiDou Ground Tracks (9 Oct 2013)

TUDelft

GPS and GLONASS Skyplots (Delft)

GNSS Frequencies

	GPS	GLONASS	BeiDou	Galileo
coding	CDMA	FDMA/CDMA	CDMA	CDMA
Upper L band (MHz)	1575.42 (L1)	1593-1610 (G1)	1561.098 (B1) 1589.742 (-)	1575.42 (E1)
Lower L band (MHz)	1227.06 (L2) 1176.45 (L5)	1237-1254 (G2) 1207.14 (G3)	1268.52 (B3) 1207.14 (B2)	1278.75 (E6) 1207.14 (E5b) 1176.45 (E5a)
status	is modernized	CDMA planned		

- 1575.42 (L1) Fully operational signals 1207.14 (B2) - Signals in build up phase
- 1589.742 (-) Not yet detected

GNSS Frequencies

TUDelft

GNSS4SWEC Summer School, Bulgaria, 2014 13

but also how other GNSS systems work ...

Fundamentals of GNSS Processing

GPS – HOW IT WORKS

GNSS4SWEC Summer School, Bulgaria, 2014 14

GPS System – how it works

Space segment

- 30 spacecraft (24 nominal)
- 20200 km altitude (11:58 orbit)
- Spread across 6 orbit planes
- Inclination 55°

Control segment

- Tracking stations
- Satellite ephemerides computation
- Upload of ephemerides to satellites

GPS System – how it works

Signal transmitted on two frequencies
 →f₀ = 10.23 MHz (fundamental freq)
 →L1 = 1575.42 MHz = 154*f₀

→L2 = 1227.60 MHz = $120*f_0$

• Pseudo Random Noise (PRN) code

→Additional signals super-imposed on L1 and L2

- \rightarrow C/A = Coarse/Acquisition code (only on L1)
 - Repeats every millisecond
 - □ Unique code for each GPS satellite
 - □Can get position to within ~5m
- →P-code, A/S
- Satellite ephemeris in data message

GPS System – how it works

- Receiver identifies each GPS sat signal through PRN (code division multiple access)
- Position of GPS satellites known through broadcast ephemeris (updated every 4 hours)
- Travel time of signal determined by comparing received and internally generated PRN codes
 - →More accurate methods measure phase of signals
- Receiver clock often not that accurate, so need to track an additional satellite to estimate clock error
 - →Need at least 4 GPS satellites in total to determine position

GPS signal components

From: Misra and Enge

Binary Phase Shift Keying (BPSK)

FREQUENCY DOMAIN

TIME DOMAIN

TUDelft

PRN codes

Two functions:

- Time signal => pseudo-range
- Identification of satellite

Both functions achieved through auto correlation

$$\Psi(\tau) = \frac{1}{T} \int_0^T f_1(t) f_1(t-\tau) dt$$
$$\Psi_c(\tau) = \frac{1}{T} \int_0^T f_1(t) f_2(t-\tau) dt$$

PRN codes have high autocorrelation and low crosscorrelation

GPS signal components

 All signals and time information are coherently derived from the same clock with a frequency of f₀=10.23 MHz

 Signal components 	Frequency	Wavelength / chiplength
L1 carrier	1575.42 MHz (154*f ₀)	19.05 cm
L2 carrier	1227.60 MHz (120*f ₀)	24.45 cm
C/A code on L1	1.023 Mbits/sec ($0.1*f_0$)	293 m
P(Y) code on L1 & L2	10.23 Mbits/sec (f ₀)	29.3 m
Broadcast message	50 bits/sec	

In future: additional civil codes on L1, L2 and L5

Y-code is encrypted version of P-code (using encryption code W)

GPS Spread-Spectrum signal

- BPSK modulation with a PRN code sequence produces a broad bandwidth This is why it is also called <u>spread spectrum</u> modulation
 - Limits the interference from other signals
 - Chosen by the U.S. military to prevent jamming and spoofing
- Spectrum is a sinc function

Delft

how to measure GNSS satellite ranges a.k.a. code (phase) measurement

Fundamentals of GNSS Processing

PSEUDO-RANGE MEASUREMENT

Pseudo-range measurement

transit time \rightarrow 70 to 90 ms

true GPS time at which code is received

emission time (imprinted on signal)

arrival time (Rx clock reading)

$$\rho(t) = c \left[t_r(t) - t^s(t - \tau) \right]$$

Pseudo-range

 \mathcal{T}

1

 $t^{s}(t-\tau)$

 $t_r(t)$

Receiver clock bias

Satellite clock bias

$$t_r(t) = t + \delta t_r(t)$$

$$\bigstar$$
receiver clock bias

$$t^{s}(t-\tau) = (t-\tau) + \delta t^{s}(t-\tau)$$

$$\bullet$$
satellite clock bias
$$\bullet$$
estimated by
control segment

$$\rho(t) = c \left[t_r(t) - t^s(t-\tau) \right] + \varepsilon_{\rho}(t)$$

$$= c \left[\varepsilon_r(t) - t^s(t-\tau) \right] + \varepsilon_{\rho}(t)$$

$$= c \left[\varepsilon_r(t) - t^s(t-\tau) \right] + \varepsilon_{\rho}(t)$$

$$= c \left[\varepsilon_r(t) - t^s(t-\tau) \right] + \varepsilon_{\rho}(t)$$

$$\rho = r + I_{\rho} + T_{\rho} + c \left[\delta t_{u} - \delta t^{s} \right] + \varepsilon_{\rho}$$

pseudorange measurement = biased and noisy measurement of the **geometric range** *r*

This is the "geometry free" pseudo-range observation equation (for all GNSS systems)

Pseudo-range observation

TUDelft

Signal strength

TUDelft

GNSS4SWEC Summer School, Bulgaria, 2014 33

Pseudo-range observations

they get longer as time proceeds ...?

TUDelft

Receiver clock error

oscillator in receiver has stability of about 10^{-7} s/s

TUDelft

Carrier phase measurements are more precise than pseudo-range measurements (dm \rightarrow mm)

Fundamentals of GNSS Processing

CARRIER PHASE MEASUREMENT

L1 wavelength about 19cm

 $\lambda \cdot \Phi$

Carrier Phase Measurements

Use carrier phase Φ instead of pseudo-ranges

- phase measurement accuracy 1% of $\lambda \Rightarrow$ **mm accuracy**
- have to determine ("fix") ambiguity N
 - > Ambiguity resolution, or,
 - Code-Carrier phase smoothing

$$\phi(t) = \phi(t_0) + f \cdot (t - t_0)$$

Carrier Phase measurements

Carrier phase measurement:

Difference between phases of receiver-generated carrier signal and received carrier signal

Carrier Phase measurements $\int \int \int dt = \int d$

Carrier phase measurement:

- Difference between phases of receiver-generated carrier signal and received carrier signal
- >Phase measurement + whole number of cycles traveled \rightarrow range
- Change in phase continuously measured (incl. full cycles)

Compare this with the pseudo range observation – very similar derivation

Carrier Phase measurements

$$\begin{split} \phi(t) &= \phi_r(t) - \phi^s(t - \tau) + N + \varepsilon_{\phi}(t) \\ \phi_r(t) &= \phi_r(t_0) + f \cdot (t - t_0) + f \cdot (\delta t_r(t) - \delta t_r(t_0)) \\ \phi^s(t - \tau) &= \phi^s(t_0) + f \cdot (t - \tau - t_0) + f \cdot (\delta t^s(t - \tau) - \delta t^s(t_0)) \\ \phi(t) &= f \cdot \tau \\ &+ f \cdot (\delta t_r(t) - \delta t^s(t - \tau)) - \text{clock biases} \\ &+ \phi_r(t_0) - \phi^s(t_0) &= \text{initial phases} \\ &- f \cdot (\delta t_r(t_0) - \delta t^s(t_0)) \\ &+ N \\ &+ \varepsilon_{\phi}(t) &= \text{noise and errors} \\ \end{split}$$

Carrier Phase measurements

$$f = \frac{c}{\lambda}$$

$$\phi(t) = f \cdot \tau$$

$$+ f \cdot \left(\delta t_{r}(t) - \delta t^{s}(t - \tau)\right)$$

$$+ A$$

$$+ \varepsilon_{\phi}(t)$$
cycles
$$\Phi = r - \frac{f_{1}^{2}}{f_{i}^{2}}I_{L1} + T$$

$$+ c \cdot \left(\delta t_{r} - \delta t^{s} + \lambda \cdot A\right)$$

 $+\mathcal{E}_{\Phi}$

$$\lambda \cdot \phi(t) = c \cdot \tau + c \cdot \left(\delta t_r(t) - \delta t^s(t - \tau) \right) + \lambda \cdot A + \lambda \cdot \varepsilon_{\phi}(t)$$

meters

$$c \cdot \tau = r - \frac{f_1^2}{f_i^2} I_{L1} + T$$

L1 carrier phase observation carrier phase is ambiguous (just starts at zero here)

L1 Doppler frequency observation

Code and Carrier Phase Equation - side by side-

Note: All parameters depend on *t* , except for ambiguities!

Note: Ambiguities must be resolved to take advantage of high precision phase measurements

how to determine the GNSS position

Fundamentals of GNSS Processing

STANDARD GNSS NAVIGATION SOLUTION

Non-linear code observation equations

Linearization Basics

non-linear model

$$\mathbf{y} = \mathbf{H}(\mathbf{v}) + \boldsymbol{\varepsilon}$$

Taylor series

$$\mathbf{y} = \mathbf{H}(\mathbf{v}_0) + \frac{\partial \mathbf{H}(\mathbf{v}_0)}{\partial \mathbf{v}} (\mathbf{v} - \mathbf{v}_0) + \dots + \boldsymbol{\varepsilon}$$

observed-minuscomputed observations

correction to approximate values

design matrix

$$\delta \mathbf{y} = \mathbf{y} - \mathbf{H}(\mathbf{v}_0)$$

 $\partial \mathbf{H}(\mathbf{v}_0)$

 $\delta \mathbf{v} = \mathbf{v} - \mathbf{v}_0$

linearized model:

$$\mathbf{\delta y} = \mathbf{A} \mathbf{\delta v} + \mathbf{\varepsilon}$$

GNSS Linearization...

$$\mathbf{y} = \mathbf{H}(\mathbf{v}_0) + \frac{\partial \mathbf{H}(\mathbf{v}_0)}{\partial \mathbf{v}} (\mathbf{v} - \mathbf{v}_0) + \dots + \boldsymbol{\varepsilon}$$

Observed minus computed:

$$\rho_0^{(k)} = \left\| \mathbf{x}_{0}^{(k)} - \mathbf{x}_{0} \right\| + c \delta t_{r0} - c \delta t_{0}^{(k)} + I_{0}^{(k)} + T_{0}^{(k)}$$

$$\delta \rho^{(k)} = \rho^{(k)} - \rho_0^{(k)}$$

$$\mathbf{y} - \mathbf{H}(\mathbf{v}_0)$$

 $\mathbf{H}(\mathbf{v}_0)$

Approximations required for:

- satellite position at time of transmission *t τ* (from ephemeris) problem: *τ* not precisely known (satellite moves ~300m in signal transit time)
- atmospheric delays
- **receiver position** at time of reception *t*
- receiver clock error

Initial values for iteration

GNSS4SWEC Summer School, Bulgaria, 2014

 $\mathbf{y} = \mathbf{H}(\mathbf{v}_0) + \frac{\partial \mathbf{H}(\mathbf{v}_0)}{\partial \mathbf{v}} (\mathbf{v} - \mathbf{v}_0) + \dots + \boldsymbol{\varepsilon}$

52

Design matrix:

Partial derivatives:

GNSS Linearization...

Coordinate part

GNSS Linearization...

$$\mathbf{y} = \mathbf{H}(\mathbf{v}_0) + \frac{\partial \mathbf{H}(\mathbf{v}_0)}{\partial \mathbf{v}} (\mathbf{v} - \mathbf{v}_0) + \dots + \boldsymbol{\varepsilon}$$

Linearized code observation equations:

Single satellite:

$$\delta \rho^{(k)} = (-\mathbf{1}^{(k)})^T \, \delta \mathbf{x} + \delta b + \tilde{\varepsilon}_{\rho}^{(k)}$$

$$\delta \mathbf{y} = \mathbf{A} \delta \mathbf{v} + \boldsymbol{\varepsilon}$$

All satellites in view:

$$\delta \mathbf{v} = \mathbf{v} - \mathbf{v}_0$$
$$\delta \mathbf{x} = \begin{pmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{pmatrix}$$
$$\delta b = b - b_0$$

Least-squares Solution (BLUE)

Linear model:

Least-squares Solution (GNSS)

Linearized model:

 $\delta \rho = \mathbf{G} \delta \mathbf{v} + \tilde{\mathbf{\varepsilon}}; \quad \mathbf{Q}_{\rho \rho}$

Least squares solution:

$$\begin{pmatrix} \delta \hat{\mathbf{x}} \\ \delta \hat{b} \end{pmatrix} = \underbrace{\left(G^{\mathsf{T}} \mathbf{Q}_{\delta \rho \delta \rho}^{-1} G \right)^{-1}}_{\mathbf{Q}_{\hat{v}\hat{v}}} G^{\mathsf{T}} \mathbf{Q}_{\delta \rho \delta \rho}^{-1} \delta \mathbf{\rho}$$

Must be iterated until solution converges (Gauss-Newton method)

Must be iterated until the solution converges...

 $v_0 = ...$ while $\|\delta \hat{\mathbf{v}}\|_{Q_{12}}^{2} \ge \eta$ $\delta \rho = \rho - \mathbf{H}(\mathbf{v}_{0})$ $\mathbf{G} = \frac{\partial \mathbf{H}(\mathbf{v}_0)}{\partial \mathbf{v}}$ $Q_{\hat{\nu}\hat{\nu}} = \left(\mathbf{G}^{\mathrm{T}}\mathbf{Q}_{\delta\rho\delta\rho}^{-1}\mathbf{G}\right)^{-1}$ $\delta \hat{\mathbf{v}} = Q_{\hat{v}\hat{v}} \cdot \mathbf{G}^{\mathsf{T}} \mathbf{Q}_{\delta\rho\delta\rho}^{-1} \delta \boldsymbol{\rho}$ $\hat{\mathbf{v}} = \mathbf{v}_0 + \delta \hat{\mathbf{v}}$ $\mathbf{v}_{\mathbf{0}} = \hat{\mathbf{v}}$ end

Precision of the LSQ Solution

Least-squares solution:

$$\begin{pmatrix} \delta \hat{\mathbf{x}} \\ \delta \hat{b} \end{pmatrix} = \underbrace{\left(G^{\mathsf{T}} \mathbf{Q}_{\delta \rho \delta \rho}^{-1} G \right)^{-1}}_{\mathbf{Q}_{\hat{v}\hat{v}}} G^{\mathsf{T}} \mathbf{Q}_{\delta \rho \delta \rho}^{-1} \delta \mathbf{\rho}$$

Depends on:

- Observations $\delta \rho$

Satellite geometry Covariance matrix

observations

Covariance matrix of the LSQ Solution:

$$\mathbf{Q}_{\hat{\mathbf{v}}\hat{\mathbf{v}}} = \left(G^{\mathsf{T}} \mathbf{Q}_{\delta\rho\delta\rho}^{-1} G \right)^{-1}$$

Covariance matrix of LSQ sol. (=precision) does not depend on the actual observations...

Depends on:

Satellite geometry

Covariance matrix observations

UDelft

Precision of the GNSS solution

Precision depends on

1) Co-variance matrix of the linearized observations

- Pseudo-range measurement noise
- Satellite ephemeris and clock errors
- Atmospheric delays
- Multipath effects
- 2) Satellite Geometry (Dillution of Precision = DOP)

Integrity of the computed positions and precision measures is provided by e.g. <u>overall-model test</u>

 $Q_{\delta
ho\delta
ho}$

URE

DOP

Covariance Matrix of the Observations

Observed minus computed:

 $\delta \rho^{(k)} = \rho^{(k)} - \rho_0^{(k)}$

Variance of the observations:

 $D\{\delta\rho^{(k)}\} = D\{\rho^{(k)}\} + \mathbf{1}^{(k)T} D\{\mathbf{x}_{0}^{(k)}\}\mathbf{1}^{(k)} + D\{c\delta t_{0}^{(k)}\} + D\{I_{0}^{(k)}\} +$

Includes:

- Pseudo range noise and multipath
- Satellite orbit and clock errors
- Atmospheric errors

GPS Error Budget

Empirical values, actual values depend on receiver, atmosphere models, time and location

Error source	RMS range error [m]	
satellite clock and ephemeris	$\sigma_{RE/CS} = 3 \text{ m}$ = SIS URE	
atmospheric propagation modeling	$\sigma_{_{RE/P}} = 5 \mathrm{m}$	
receiver noise and multipath	$\sigma_{_{RE/RNM}}=1~\mathrm{m}$	
User Range Error (URE)	$\sigma_{\scriptscriptstyle URE}^{}=6~{ m m}$	

$$\sigma_{URE} = \sqrt{\sigma_{RE/CS}^2 + \sigma_{RE/P}^2 + \sigma_{RE/RNM}^2}$$

Satellite geometry

If:
$$\mathbf{W}^{-1} = \mathbf{Q}_{\rho\rho} = \sigma^2 I_K$$

$$\mathbf{Q}_{\hat{\mathbf{v}}\hat{\mathbf{v}}} = \sigma^2 \underbrace{(G^T G)^{-1}}_{D} = \begin{pmatrix} \sigma_x^2 & \operatorname{cov} \\ & \sigma_y^2 \\ & & \sigma_z^2 \\ & & \sigma_z^2 \\ & & & \sigma_z^2 \end{pmatrix}$$

RMS position error

$$\sqrt{\sigma_x^2 + \sigma_y^2 + \sigma_z^2} = \sigma \sqrt{D_{11} + D_{22} + D_{33}} = \sigma \cdot \text{PDOP}$$

influence of satellite geometry on precision \rightarrow Position Dilution of Precision (PDOP)

RMS clock bias error

$$\sqrt{\sigma_b^2} = \sigma \sqrt{D_{44}} = \sigma \cdot \text{TDOP}$$

RMS overall error

$$\sqrt{\sigma_x^2 + \sigma_y^2 + \sigma_z^2 + \sigma_b^2} = \sigma \sqrt{D_{11} + D_{22} + D_{33} + D_{44}} = \sigma \cdot \text{GDOP}$$

Overall Model test

Least-squares solution:

$$\begin{pmatrix} \delta \hat{\mathbf{x}} \\ \delta \hat{b} \end{pmatrix} = \underbrace{\left(G^{\mathrm{T}} \mathbf{Q}_{\delta \rho \delta \rho}^{-1} G \right)^{-1}}_{\mathbf{Q}_{\hat{v}\hat{v}}} G^{\mathrm{T}} \mathbf{Q}_{\delta \rho \delta \rho}^{-1} \delta \mathbf{\rho}$$

Least-squares residuals:

$$\mathbf{e} = \delta \mathbf{\rho} - G \begin{pmatrix} \delta \hat{\mathbf{x}} \\ \delta \hat{b} \end{pmatrix}$$

Overall model test:

$$T = \frac{\mathbf{e}^T \mathbf{Q}_{\delta\rho\delta\rho}^{-1} \mathbf{e}}{m-4} \quad \Box \ \chi^2(m-4) / (m-4) \rightarrow E\{T\} = 1$$

Accept if
$$T = \frac{\mathbf{e}^T \mathbf{Q}_{\delta \rho \delta \rho}^{-1} \mathbf{e}}{m-4} < \chi_k^2 (\alpha; m-4) / (m-4)$$

Number of satellites in view has a big influence on the precision of the solution...

TUDelft

Which, how large, and what to do about it?

Fundamentals of GNSS Processing

GNSS ERROR SOURCES

GNSS4SWEC Summer School, Bulgaria, 2014 67

GNSS error sources

other (e.g. snow)

receiver

- Noise (code or phase)
 - instrumental delays *)
- antenna
 - phase center
 - elevation/azimuth dep.

other

- spoofing / interference
- tides and loading
- phase wind-up

*) between signals and systems

Satellite clock and ephemeris errors

- Broadcast ephemerides (orbits and clocks)
 - Determined by Control Segment based on measurements
 - Have been improved significantly over the last years
 - Currently, ranging error < 2-3 meter rms
 - Together with ionosphere delay the largest error source
- What can we do about it?
 - -> Use differential GPS (**DGPS**) or relative positioning
 - -> Use precise orbits and clocks
 - International GNSS Service (free, cm level)
 - Commercial Providers

Example of using IGS orbits&clocks

Broadcast

IGS orbits, clocks and Ionosphere map

L1 pseudo range measurements

But ionosphere free l.c. of carrier phase can give cm accuracy...

Atmosphere of the Earth

TUDelft

Atmospheric Delay Errors

		ionosphere	troposphere
height		50 – 1000 km	0 – 16 km
variability		diurnal, seasonal, solar cycle (11 yr), solar flares	relatively low
zenith delay		meters – tens of meters	2.3 – 2.6 m (sea level)
	<i>el</i> =30°	1.8	2
obliquity factor	el=15°	2.5	4
	<i>el</i> = 3°	3	10
modeling error (zenith) *)		0.2 - >10 m	5 – 10 cm (no met. data)
dispersive		yes	no

all values are approximate, depending on location and circumstances

*) mm-cm errors in case of ionosphere free linear combination, zenith delay estimation, or relative positioning

Atmospheric Delay Errors

Ionosphere

Delft

• For GNSSS (L-band) signals **ionosphere is dispersive** :

- refractive index depends on frequency of signal
- different phase (carrier) and group (code) velocities, \mathcal{V}_p and \mathcal{V}_g , with refractive index

$$n_p = \frac{c}{v_p}$$
 $n_g = \frac{c}{v_g} = n_p + f \frac{dn_p}{df}$ modulated carrier waves of group of waves of different frequencies

Results in frequency dependent delays

Results in phase delay being negative (advance!)

Ionosphere: Total Electron Content

 Propagation speed depends on total electron content (TEC) = number of electrons in tube of 1 m² from receiver to satellite

$$TEC = \int_{S}^{R} n_{e}(l) dl \qquad [TECU] \qquad 1 \text{ TECU (TEC Unit)} = 10^{16} \text{ electrons / m}^{2}$$

with $n_e(l)$ the electron density along the path

Can be computed from dual frequency GNSS observations

$$\text{TEC} = \frac{1}{40.3} \frac{f_{L1}^2 f_{L2}^2}{f_{L1}^2 - f_{L2}^2} (\rho_{L1} - \rho_{L2})$$

$$I_{L1} = \frac{40.3 \cdot \text{TEC}}{f_{L1}^2}$$
$$I_{L2} = \frac{40.3 \cdot \text{TEC}}{f_{L2}^2} = \frac{f_{L1}^2}{f_{L2}^2} I_{L1}$$

Data Astronomical Institute University of Berne

Ionosphere: how to deal with it?

- apply broadcast model (reduction 50 70%)
- use TEC maps from IGS (.25 1 m error, ok for code)
- ionosphere-free combination (dual-frequency receiver required!)

Ionosphere-free linear combination

• Ionosphere-free linear combination (GPS L1 & L2 freq.)

$$\rho_{IF} = \frac{\int_{L_1}^{2} \rho_{L_1}}{\int_{L_1}^{2} - \int_{L_2}^{2} \rho_{L_1}} - \frac{\int_{L_2}^{2} \rho_{L_2}}{\int_{L_1}^{2} - \int_{L_2}^{2} \rho_{L_2}} \square 2.546\rho_{L_1} - 1.546\rho_{L_2}$$

- Ionospheric delay removed to first order (residual effects ~ mm)
- St.dev. ionosphere free linear combination factor 3 larger (argh..)

$$\sigma_{\rho_{IF}} \Box \sqrt{2.546^2 \sigma_{\rho_{L1}}^2 + 1.546^2 \sigma_{\rho_{L2}}^2} \Box 3\sigma_{\rho}$$

- Works for pseudo range (code) and carrier-phase
- For carrier-phase the ionosphere free linear combination has a wavelength of 0.6 cm (or 10.6 cm if we know the wide-lane)

Ionosphere-free linear combination

- St.dev. of the ionosphere free linear combination factor 3 larger
- Errors on L1 are multiplied by a factor 2.5, and errors on L2 by a factor -1.5. This implies
 - Frequency dependent errors could easily be amplified
 - Especially errors with opposite sign on L1 and L2 are amplified
 - Extra care needs to be taken for antenna and other instrumental delays in case different antenna and receiver types are combined
- Using L5 instead of L2 results in a small improvement
- Using three frequencies instead of two also helps *)

^{*)} Three frequencies could also be used to eliminate higher order effects, but this is not recommended because this will increase the sensitivity to frequency dependent instrumental errors only further. If higher order effects are a problem use a correction algorithm.

Troposphere delay error

- Troposphere: 9 km (@poles) 16 km (@equator)
- Propagation speed lower than in free space -> apparent range is longer (2.5m@90⁰ – 25m@5^o)
- Non-dispersive, i.e. refraction does not depend on frequency, same phase and group velocities, i.e.

$$T_{\rho_{L1}} = T_{\rho_{L2}} = T_{\phi_{L1}} = T_{\phi_{L2}} = T$$

Dry gases and water vapor

How to deal with it: 1. Tropospheric delay models Our choice (zenith delay error 5 – 10 cm) 2. Extra unknown parameter 3. Relative Positioning (short baselines)

Delft

Troposphere delay estimation $T = m_d(el) \cdot T_{z,d} + m_w(el) \cdot T_{z,w}$ Unknown wet delay Computed hydrostatic (1-80 cm)delay (few mm accuracy) mapping functions m_d, m_w $T_{z,d}, T_{z,w}$ zenith troposphere delays Receiver el elevation

Extra unknown parameter (position + clock + zenith delay)

Recipe for millimeter GNSS

Recipe

- Use carrier phase data \rightarrow estimate extra ambiguities
- Use ionosphere free linear combination
- Estimate extra zenith delay parameter \rightarrow our "little" bonus !!
- Use IGS orbits and clocks , or
- Use IGS orbits and form baselines

Precise Point Positioning Network processing

 May have to include some other corrections, such as phase windup, tides, loading corrections, ...

This changes the observation equations drastically ...

how to determine the GNSS position with mm accuracy, and get atmospheric delay as a bonus

Fundamentals of GNSS Processing

GNSS CARRIER PHASE SOLUTION

GNSS4SWEC Summer School, Bulgaria, 2014 84

Code and Carrier Phase Equation

Note: All parameters depend on *t* , except for ambiguities!

Note: Ambiguities must be resolved to take advantage of high precision phase measurements

Linerized code observation equations

$$(-\mathbf{1}^{(k)})^{T} = \begin{bmatrix} x^{(k)}_{0} - x_{0} \\ \|\mathbf{x}^{(k)}_{0} - \mathbf{x}_{0}\| & -\frac{y^{(k)}_{0} - y_{0}}{\|\mathbf{x}^{(k)}_{0} - \mathbf{x}_{0}\|} & -\frac{z^{(k)}_{0} - z_{0}}{\|\mathbf{x}^{(k)}_{0} - \mathbf{x}_{0}\|} \end{bmatrix}$$

Unit direction vector (receiver to satellite)

$$\delta \rho^{(k)} = \rho^{(k)} - \rho_0^{(k)}$$

Observed minus computed

$$\delta \mathbf{x} = \begin{pmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{pmatrix}$$
$$\delta b = b - b_0$$

Single satellite:

ŤUDelft

$$\delta \rho^{(k)} = (-\mathbf{1}^{(k)})^T \, \delta \mathbf{x} + \delta b + \tilde{\varepsilon}_{\rho}^{(k)}$$

All satellites in view:

Linerized carrier phase equation (1)

Single satellite:

$$\delta \Phi_{Li}^{(k)} = (-\mathbf{1}^{(k)})^T \, \delta \mathbf{x} + \delta b + \lambda_{Li} A_{Li}^{(k)} + \tilde{\varepsilon}_{\Phi}^{(k)}$$

 $\Phi_{Li}^{(k)} = \Phi_{Li}^{(k)} - \Phi_{Li0}^{(k)}$

Observed minus computed

All satellites in view (single epoch):

fUDelft

GNSS4SWEC Summer School, Bulgaria, 2014 87

Linerized carrier phase equation (2)

The equations on the previous slide are rank-defect. Proof:

I.e. columns are linear dependent, therefore, no unique solution. We have to re-parameterize the unknown parameters.

Linerized carrier phase equation (3) Single satellite:

$$\delta \Phi_{Li}^{(k)} = (-\mathbf{1}^{(k)})^T \, \delta \mathbf{x} + \delta b + \lambda_{Li} A_{Li}^{(k)} + \tilde{\varepsilon}_{\Phi}^{(k)}$$

TUDelft

All satellites in view (single epoch, rank defect solved):

Linerized carrier phase equation (4)

Re-parameterized unknowns:

Biased receiver clock error

 $\delta \overline{b} = \delta b + \lambda_{Li} A_{Li}^{(1)}$

Single difference ambiguities:

 $A_{Li}^{(1k)} = A_{Li}^{(k)} - A_{Li}^{(1)}$

Linerized carrier phase equation (5) Single satellite:

$$\partial \Phi_{Li}^{(k)} = (-\mathbf{1}^{(k)})^T \, \delta \mathbf{x} + \delta b + \lambda_{Li} A_{Li}^{(k)} + \tilde{\varepsilon}_{\Phi}^{(k)}$$

TUDelft

All satellites in view (single epoch, rank defect solved):

Linerized carrier phase equation (6) Single satellite with Troposphere Zenith Delay (ZTD) correction: $\delta \Phi_{Ii}^{(k)} = (-\mathbf{1}^{(k)})^T \delta \mathbf{x} + \delta b + m_w^{(k)} \delta T + \lambda_{Ii} A_{Ii}^{(k)} + \tilde{\varepsilon}_{\Phi}^{(k)}$

All satellites in view (single epoch, rank defect solved, ZTD):

ÚDelft

Linerized carrier phase equation (7)

ŤUDelft

Linerized carrier phase equation (8)

Multiple epochs, static position:

TUDelft

Zenith Delay parameter(s)

- In the previous slide corrections to the a-priori Zenith Total delay (ZTD) appear once per epoch, however,
- The actual ZTD is quite smooth compared to the GNSS sample rate (seconds to minutes), therefore,
- The zenith delay correction is either solved
 - 1. in batches (e.g. one parameter per hour), or,
 - 2. as piecewise polynomials, or,
 - as random-walk or Markov process.(specifying a power spectral density)
- In addition to ZTD gradient parameters can be estimated as well. Gradient parameters are typically estimated only once or twice per day.

Remarks and observations

- Receiver clock error is based
- Only single difference ambiguities can be estimated
- Clock parameter is kinematic parameter (white noise)
- Troposphere delay is a dynamic parameter (random walk, Markov process) or piecewise polynomial
- Position parameter is static parameter
 - Site displacement effects (tides, loading,...) must be corrected
 - For well behaving permanent stations, with well known position and velocity, the position parameter may be constrained or even removed from the equations
- Height, receiver clock, and troposphere delay are highly correlated, especially for high elevation cutoff's
- Tropospheric Zenith Delay estimation is very sensitive to changes in the antenna phase patterns. Therefore, antenna phase "center" variations must be modeled carefully.

Antenna Phase Center Variations (1)

The phase center is a theoretical concept; it does not actually exist; but, a 'phase center' can be computed by fitting a sphere to lines of constant phase.

Calibrations for the phase center variations are given in the form of a table in elevation and azimuth.

Antenna Phase Center Variations (2)

Elevation dependent phase delays for a real antenna.

L1 and L2 elevation dependent delay are not the same.

Effect in the order of mmcm.

<u>The effect is amplified in the</u> <u>ionosphere free linear</u> <u>combination (max 4.6 cm for</u> <u>this antenna)</u>

TUDelft

Antenna phase center variations (3)

Patterns for different antennae

- Type calibrations

TUDelft

- Individual calibrations

Antenna Phase Center Variations (4)

Absolute calibrations:

- Satellite antenna (block/type dependent)
- Receiver antenna (type/individual)

Relative calibrations:

- With respect to 'standard' AoA (JPL) Dorne-Margolin chokering antenna
- Chokering antenna was assumed `perfect' (but is not, but by coincidence this absorbed the effect of not using satellite antenna calibrations
- now depricated (or only for short baselines)

Satellite antenna delays have been calibrated using GPS measurements from the IGS network; scale factor fixed to SLR value

Multipath: example

[m]

3.092*L2

+

- 4.092*L1

CI

П

Mc

The elevation and azimuth dependent phase delays are affected by nearby objects (in the near field), such as the monument and antenna radome.

The result is that the actual antenna pattern is different from the type dependent calibration.

These effects can be studied by stacking residuals (observed minus computed) after estimating the station position and zenith delays. This will reveal some patterns, but not all, so it cannot be a replacement for proper calibration procedures.

This is especially important for Slant Delay Estimation.

Near field effects

TUDelft

Residual stacking – Carrier Phase Multipath Maps _{To correct GPS observa}

Example of a multipath map for Apeldoorn, May 1-24 2003 (1x1 degree bins in an equal area projection) To correct GPS observations for multipath (affects all parameters, including slant delays) [iteration] To quantify and visualize multipath/antenna effects: Polar plots (w/ interpolation -> see example) Elevation dependent phase delay plots (next)

- Elevation dependent standard deviation plots (next)
- To re-weight observations

What remains after correction with multipath maps are the <u>slant tropospheric delays!</u>

Residual stacking - Implementation

TUDelft

GNSS4SWEC Summer School, Bulgaria, 2014 105

Residual stacking – Elevation dependent delay

GNSS4SWEC Summer School, Bulgaria, 2014 106

Residual stacking – Elevation dependent weighting

Residual stacking: impact of antenna changes (BORK) 3 month period - subdivided in six 2-week periods

"Beware of the dog" notice

If something changes with elevation, beware and pay attention, it will affect your ZTD and height estimates.

Some examples so far...

- Antenna elevation (and azimuth) dependent phase delay
 - Satellites
 - Receiver antenna calibrations
 - Near field effects (monument, radome, ...)
- Mapping function for the troposphere parameter
- Elevation dependent weighting

Slant Delays

Slant delays can be computed in two ways:

- 1. From estimated ZTD and gradiient parameters
- 2. Slant delay = m.f. * ZTD + I.s.-residual + corr. Multipath

Mapping function (m.f.) is needed also in the 2nd slant delay approach to separate receiver clock error from atmospheric delay:

- receiver clock error is the same for every l.o.s. observation
- delay increases with the zenith angle

Slant delays of the same receiver at each epoch are

- Biased with the same "residual" receiver clock error
- Correlated

This should be well understood for assimilation

What are slant delays?

"Slant delays" are a way of preprocesing the GPS data:

- Satellite orbits, station position, clocks and antenna effects are removed
- As an extra service multipath effects are removed
- Easy access to raw data for meteorologists

Several functions of observations have already been used

- receiver and satellite clocks: "mean delay"
- cos(e) and 1/cos(e) functions (height, ZTD)

• • • • •

Optimal interval for Slant and Zenith Delays?

- Zenith delay every 20 minutes?
- Slant delay every 5 minutes (or even every epoch)?

Rationale for Slant Delays

Compared to ZTD, with slants delays ...

- it is known which part of the atmosphere is sampled (the sky is not sampled homogeneously)
- information on non-isotropic delays and gradients in the atmosphere become available
- there are simply more observations and they are much 'closer' to the raw GPS data
- could include more low elevation observations
- data can be (re-)processed more intelligently down the line:
 - Might be useful to investigate assimilation (or tomography) of single or double differenced slant delays, or include additional parameters
 - ZTD can be recomputed from slant delays, using different mapping functions, or even re-doing receiver clock estimation

Example of 'slant delays'

INTEGRATED WATER VAPOUR (IWV) PROCESSING

Fundamentals of GNSS Processing

From delay to column water vapour

Integrated Water Vapour from GNSS

Integrated Water Vapour Estimation

Integrated water vapour estimation comprises the following steps:

- 1. Ionosphere free linear combinations from dual frequency GPS
- Compute a-priori values for Zenith Hydrostatic Delay from surface pressure values (observed or from model), multiply with hydrostatic mapping function and subtract from ionosphere free l.c.
- 3. Introduce the Zenith Wet Delay (ZWD) as an extra parameter in the GNSS processing, and estimate it along with position, receiver clock error and other parameters. The wet mapping function is used as coefficient in the design matrix to relate the observed slant delay to the vertical wet delay

4. Convert ZWD into Integrated Water Vapour using $Q(T_m)$ or $Q(T_s)$.

Some applications (e.g. NWP) use ZTD=ZHD+ZWD instead.

Conversion to Integrated Water Vapour

The zenith delay (T_{ZTD}), estimated by GPS, is converted to integrated water vapour (IWV) using surface pressure and temperature readings

$$IWV = \frac{1}{Q(T_m)} (\hat{T}_{ZTD} - T_{ZHD} (P_s, \varphi, h)) \quad , \quad T_m \approx 70.2 + 0.72T_s$$

- T_{ZHD} the hydrostatic zenith delay, calculated from surface pressure P_{sr} station latitude and height
- conversion factor $Q(T_m)$ is ~6.5 (function of mean temp)
- unit for integrated water vapour (IWV) is kg/m²
- accuracy is 1-2 kg/m²

<u>Problem</u>: surface temperature $T_s \rightarrow T_m$, *i.e.* $Q(T_s) \rightarrow Q(T_m)$

For numerical weather prediction we may use estimated ZTD instead!

$Q(T_s)$ from radiosonde De Bilt 1993-1999

GNSS4SWEC Summer School2 Blagada1 2014

120

Fundamentals of GNSS Processing

PRECISE POINT POSITIONING VS NETWORKS

GNSS4SWEC Summer School, Bulgaria, 2014 121

Time is up...

- In the next lecture Jan Douse will compare PPP and Network approaches
- In the appendices you will find some extra information on
 - Differential (relative) GNSS using carrier phase measurements
 - The International GNNS Service
 - Background information on troposphere delay and mapping functions

For more information see Navipedia http://www.navipedia.net/index.php/Main_Page

Fundamentals of GNSS Processing

QUESTIONS?

GNSS4SWEC Summer School, Bulgaria, 2014 124

Many GNSS errors are eliminated or reduced with differential GNSS

Fundamentals of GNSS Processing

Appendix A: RELATIVE (DIFFERENTIAL) GNSS

Differential GPS

- Many EO applications require highly accurate positioning measurements
- How?

By using static solutions if we can By using carrier phase measurements By using nearby GPS stations whose positions are well known => "Differential GPS" or relative positioning

Differential GPS

- Differential GPS gives accuracy < 1m with code observations and < 2cm with carrier phase
- What happens:

UDelft

- GPS orbit error and atmospheric error drop out (distance up to 100km)
- But noise/multipath increases by factor $\sqrt{2}$ (two receivers)
- Carrier phase ambiguities become integers (fixing)

 Differences are formed between the observations of two receivers (as shown) and/or between GPS satellites

Single Difference Carrier Phase

x ^S

Combinations of 2 observations

single difference between receivers

- \rightarrow Satellite clock error eliminated
- \rightarrow Unknown parameters
 - \rightarrow Baseline vector
 - → Differential receiver clock *)
 - \rightarrow Carrier phase ambiguities *)
- *) Model is rank-defect (loose 1 parameter)
 - \rightarrow clock lumped with SD ambiguity
 - \rightarrow double difference ambiguity

Least squares adjustment with

- 3 baseline coordinates
- N receiver clock parameters
- m-1 phase ambiguities

ŤUDe

Receivers must be synchronized and track the same satellites (imposes a distance limit)!

chool, Bulgaria, 2014

128

Variance of the single difference observation

The variance of the single difference observation is

$$D\{\Delta\underline{\bar{P}}_{12}^{s}\} = D\{\Delta\underline{P}_{12}^{s}\} + \mathbf{e}_{12}^{s*}D\{(\Delta\underline{\hat{\mathbf{x}}}^{s} - \Delta\underline{\hat{\mathbf{x}}}_{1})^{a}\}\mathbf{e}_{12}^{s} + \gamma_{i}D\{\Delta\underline{I}_{12}^{s}^{a}\} + D\{\Delta\underline{T}_{12}^{s}^{a}\}$$

$$\simeq 2\sigma_{0}^{2} + \mathbf{e}_{12}^{s*}\mathbf{Q}_{(\Delta\underline{\hat{\mathbf{x}}}^{s} - \Delta\underline{\hat{\mathbf{x}}}_{1})^{a}}\mathbf{e}_{12}^{s} + \gamma_{i}\sigma_{\Delta I_{12}^{s}}^{2} + \sigma_{\Delta T_{12}^{s}}^{2}$$

$$\simeq 2\sigma_{0}^{2} \quad \text{orbit \& ref.frame} \quad \text{ionosphere}$$

assuming that the standard deviation of both receivers is identical and are uncorrelated.

The effect of orbits errors is strongly reduced, because

$$\|\mathbf{e}_{12}^{s}\| = \|\mathbf{e}_{2}^{s} - \mathbf{e}_{1}^{s}\| < \frac{\|\mathbf{x}_{12}\|}{2000 \text{km}} \simeq 0.5 \, 10^{-8} \|\mathbf{x}_{12}\| \ll 1$$

Only differential atmospheric errors enter the equation.

Delft

Negligible

for short

baselines

Double Difference Carrier Phase

Combinations of 4 observations

single difference between receivers \rightarrow satellite clock error eliminated single difference between satellites

→ receiver clock error eliminated

→ the double difference phase ambiguity becomes an integer number

Least squares adjustment with

- 3 baseline coordinates
- *m*-1 phase ambiguities

m satellites with m > 4

RESULTS IDENTICAL TO SINGLE DIFFERENCE!

(if the proper covariance matrix is used)

Double Difference observation equation (1)

• The double difference observation equation for a single epoch is

$$E\left\{\begin{bmatrix}\Delta\underline{\bar{P}}_{12}^{2} - \Delta\underline{\bar{P}}_{12}^{1}\\ \vdots\\ \Delta\underline{\bar{P}}_{12}^{m} - \Delta\underline{\bar{P}}_{12}^{1}\end{bmatrix}\right\} = \begin{bmatrix}-(\mathbf{e}_{2}^{2} - \mathbf{e}_{2}^{1})^{*} & \lambda_{i}\\ \vdots\\ -(\mathbf{e}_{2}^{m} - \mathbf{e}_{2}^{1})^{*} & \ddots\\ -(\mathbf{e}_{2}^{m} - \mathbf{e}_{2}^{1})^{*} & \lambda_{i}\end{bmatrix}\begin{bmatrix}\Delta\mathbf{x}_{12}\\ A_{12}^{2} - A_{12}^{1}\\ \vdots\\ A_{12}^{m} - A_{12}^{1}\end{bmatrix}$$

we have m_k -1 double difference observations (one less).

- In the double difference equations
 - 1. The receiver clock error (one per epoch) is eliminated
 - 2. The rank defect has disappeared

```
Observations: (m_k-1)*N
Unknowns:
- Static: 3 + (m_k-1)
- Kinematic 3*N + (m_k-1)
```

- Easier to solve by least-squares because there are fewer unknowns
- Solution is identical to single difference, as long as the proper double differenced co-variance matrix is used

Double Difference observation equation (2)

• The covariance matrix for the double difference observations is

$$\begin{aligned} \mathbf{Q}_{\Delta \underline{\bar{\mathbf{p}}}_{12}^{1S}} &= \bar{\mathbf{D}} \mathbf{Q}_{\Delta \underline{\bar{\mathbf{p}}}_{12}^{S}} \bar{\mathbf{D}}^{*} = 2\sigma_{0}^{2} \bar{\mathbf{D}} \bar{\mathbf{D}}^{*} \\ &= 2\sigma_{0}^{2} \begin{bmatrix} 2 & 1 & \dots & 1 \\ 1 & 2 & & 1 \\ \vdots & \ddots & \vdots \\ 1 & 1 & & 2 \end{bmatrix} = 2\sigma_{0}^{2} (\mathbf{I}_{m_{k}-1} + \mathbf{u}_{m_{k}-1} \mathbf{u}_{m_{k}-1}^{*}) \end{aligned}$$

assuming $\mathbf{Q}_{\Delta \underline{\mathbf{p}}_{12}^S} = 2\sigma_0^2 \mathbf{I}_{m_k}$ is the single-difference co-variance matrix. The double-difference co-variance matrix is not a diagonal matrix, even if the original observations are uncorrelated.

- Drawback of double differences is that the <u>co-variance matrix is not diagonal</u> anymore, as it was the case in the single difference baseline
- However, in case of 3 or more receivers, there will also be significant correlation between otherwise independent single differences.

Delft

Difficulties with Carrier Phase Solutions

Using GPS carrier phase measurements have opened the door to a large range of applications; precision of a few millimeters – centimeters.

But...

- Extra phase ambiguities have to be estimated
 - for every satellite receiver pair one ambiguity per frequency
 - constant in time (unless the signal is interrupted)
- Can be computed when satellites move w.r.t. the receiver: <u>i.e. we</u> <u>have to measure over a certain period</u>. The duration depends on
 - the distance to the reference receiver (due to atmospheric effects)
 - number of satellites and the satellite configuration
- Linear combinations (double differences) of phase ambiguities are integer ⇒ this property is used to shorten the measurement duration

Ambiguity Resolution

Basis for Real-Time Kinematic (RTK)

- Phase ambiguities can be parameterized as double differences in relative model (both in double and single difference models)
- Double-differenced ambiguities should be integers:

$$A_{12}^{ij} = A_{12}^{j} - A_{12}^{i} = A_{2}^{j} - A_{1}^{j} - A_{2}^{i} + A_{1}^{i}$$

$$= N_{2}^{j} + \overline{\phi}_{2}(t_{0}) - \overline{\phi}^{j}(t_{0}) - N_{1}^{j} - \overline{\phi}_{1}(t_{0}) + \overline{\phi}^{j}(t_{0}) - N_{2}^{i} - \overline{\phi}_{2}(t_{0}) + \overline{\phi}^{i}(t_{0}) + N_{1}^{i} + \overline{\phi}_{1}(t_{0}) - \overline{\phi}^{i}(t_{0})$$

$$= N_{2}^{j} - N_{1}^{j} - N_{2}^{i} + N_{1}^{i}$$

where $A \in R$ and $N \in Z$

- When <u>integer</u> ambiguities are **resolved** and **fixed**, phase data start to act as code data (pseudoranges), but with very high precision!
 - ⇒ **short observation times** may be used

Impact of Differential GPS

SA is on (before 2 May 2000)

Single Point Positioning with pseudo ranges (code)

Relative positioning with pseudo ranges (code)

Impact of Carrier Phase Measurements With relative positioning (DGPS)

Relative positioning with pseudo ranges (code)

Relative positioning with carrier phase data (ambiguities resolved: **fixed**)

Impact of Ambiguity Resolution (AR)

Even worse than code data -> depends on measurement interval (extreme example)

Relative positioning with carrier phase data (ambiguities estimated: **float**)

Relative positioning with carrier phase data (ambiguities resolved: **fixed**)

Baseline precision

UDelft

 The co-variance matrix of the baseline vector (3 coordinates) in case of carrier phase data is (ambiguity float)

• In case of pseudo range data / carrier phase ambiguity fixed

 In case of carrier phase data (with float ambiguities) the precision depends also on the <u>change in satellite geometry</u>

GNSS4SWEC Summer School, Bulgaria, 2014 139

TUDelft

Applications of Ambiguity Resolution

Differential + Use of carrier phase (mm accuracy, but ambiguous)

LAMBDA method: fast and efficient GNSS carrier phase cycle ambiguity resolution (made in Delft) ⇒real-time precise surveying Development of models and algorithms for data processing \Rightarrow high precision applications

Network RTK

- RTK ("Real Time Kinematic")
 - Centimeter accuracy through the use of carrier phase and differential processing (baselines); ambiguity resolution is key.
 - Baseline length limited to 20-30 km (need nearby reference station)
- Network RTK
 - Network instead of single baseline -> improved integrity, availability
 - Interpolation of atmospheric delays -> larger distances between RTK stations (50-70 km)
 - Network RTK implementations
 - Virtual GPS reference stations; more centralized processing
 - Master-auxiliary concept (MAC or MAX) and Flachen-Korrektur-Parameter (FKP); efficient packing of data of multiple reference stations, processing by user receiver
- Wide Area RTK
 - Network station spacing >> 100 kilometers
 - Main issue: ionosphere corrections

Network RTK

Examples of RTK networks in the Netherlands

Average distance between stations in each network is 40km Data available in real-time via GPRS (NTRIP) for surveyors –> hence the name "real-time kinematic" **RTK** <u>NETPOS is also made available for meteorological applications</u>

It is time to put IGS in the spotlight...

Fundamentals of GNSS Processing

Appendix B: INTERNATIONAL GNSS SERVICE (IGS)

International GNSS Service (IGS)

Network of more than 200 GNSS stations, 5 regional and 3 global data centers, 9 analysis centers and a central bureau

IGS products

- GNSS satellite orbits and clocks
 - Final and Rapid products for post-processing
 - Ultra rapid products for (near-) realtime processing
- Earth rotation parameters
- IGS stations coordinates and velocities
- Atmosphere parameters (Total Electron Content, Water Vapour)
- Tracking data of the IGS stations

Includes GPS and GLONASS, and other systems on experimental basis

GMT Dec 13 17:24:15 2004

Accuracy of IGS Products

Final ¹⁾ (2 weeks)	Rapid (2 days)	Ultra-rapid ²⁾ (real time)
< 5 cm	5 cm	10-15 cm
0.1 ns	0.2 ns	5 ns
0.1 mas	0.2 mas	
0.2 mas/day	0.4 mas/day	
20 us/day	20 us/day	
	Final ¹⁾ (2 weeks) < 5 cm 0.1 ns 0.1 mas 0.2 mas/day 20 us/day	Final1) (2 weeks)Rapid (2 days)< 5 cm

- Including daily solutions of station coordinates (in SINEX format) within 2-3 weeks (3 mm - 5 mm)
- ²⁾ Twice per day, with prediction for next 24 hours

IGS Orbit and Clock Products

GPS satellite orbits and clocks are the main IGS product:

	Accuracy	Delay	Frequency	Data Interval
Broadcast	~260 cm/~7 ns	real time	2 hour	
Ultra-Rapid	~25 cm/~5 ns	real time	2x day	15 min/5 min
Rapid	~5 cm/0.2 ns	17 hour	daily	15 min/5 min
Final	<5 cm/0.1 ns	~13 days	weekly	15 min/5 min

IGS orbits and clocks are an excellent replacement for the broadcast orbits

→ centimeter-decimeter accuracy

IGS orbits and clocks are correlated and must be used together

→ Precise Point Positioning

IGS Postions and Velocities

TUDelft

Refractivity of the troposphere

Fundamentals of GNSS Processing

Appendix C: TROPOSHERE AND MAPPING FUNCTIONS

Composition of the troposphere

The troposphere contains both dry air and water vapour:

•Dry air has no significant variation in composition with latitude and height.

•The amount of water vapour, on the other hand, varies widely, both spatially and temporally. Most of the water vapour is contained in the boundary layer, the lowest 2 km of the troposphere.

The mixture is called moist air.

Moist air behaves (almost) like an ideal gas.

Troposphere delay and Refractivity

The tropospheric delay (better: neutral atmospheric delay) is given by

$$\Delta \rho = 10^{-6} \int_{A}^{B} N ds = 10^{-6} \int_{A}^{B} N_{d} ds + 10^{-6} \int_{A}^{B} N_{w} ds = \Delta \rho_{d} + \Delta \rho_{w}$$

The integral equation can be evaluated using

- □ the actual refractivity profile, or
- □ it may be approximated by an analytical function, based an a simple model.

Profiles of N_{ν} show strong variations with time and location, and are generally difficult to predict.

The variability is largest in the regions of

- 0 km 1.5 km (atmospheric boundary layer)
- cloud layers (usually below 4 km)
- The wet part is only significant in the lower part of the troposphere.

The variability of N_d is very small because of the constant ratio of constituents

Refractivity of air (1)

The refractivity N of the atmosphere can be split into refractivity of dry are N_d and refractivity of water vapour N_v

$$N = N_d + N_v$$

Delft

The dry and wet refractivity of a parcel of air are given by the following model [Thayer, 1994]

$$N_d \doteq k_1 \frac{P_d}{T} Z_d^{-1} = k_1 R_d \rho_d \cong k_1 \frac{P_d}{T}$$

The compressibility factors Z_d and Z_v are close to one.

$$N_{\nu} \doteq [k_2 \frac{e}{T} + k_3 \frac{e}{T^2}] Z_{\nu}^{-1} = (k_2 + k_3/T) R_{\nu} \rho_{\nu} \cong k_2 \frac{e}{T} + k_3 \frac{e}{T^2}$$

with P_d and e the partial pressures of dry air and water vapour [hPa] (1 $hPa = 1 \ mbar = 100 \ mmode mmo$

The accuracy of N_d is estimated conservatively at 0.02% of N_d . A conservative

Refractivity of air (2)

The dry refractivity and first term of the water vapour refractivity are the result of induced molecular polarization.

The second, and much larger term of water vapour refractivity, represents the effect of the permanent dipole moment of the water vapour molecule.

The figure shows the contribution of both parts of the wet refractivity for saturation pressures.

Refractivity of air (3)

Instead of splitting refractivity into a dry and water vapour part, we can also split it into a hydrostatic N_h and non-hydrostatic N_w part

$$N = N_h + N_w$$

Delft

The hydrostatic and non-hydrostatic refractivity are given by

$$N_h \doteq k_1 \frac{P}{T_v} Z_d^{-1} = k_1 R_d \rho_m \cong k_1 \frac{P}{T}$$
 The compressibility factors Z_d and Z_v are close to one; $T_v \cong T$.

$$N_w \doteq [k'_2 \frac{e}{T} + k_3 \frac{e}{T^2}] Z_v^{-1} = (k'_2 + k_3/T) R_v \rho_v \cong k'_2 \frac{e}{T} + k_3 \frac{e}{T^2}$$

with *P* the total pressure [hPa] and *e* the partial pressure of water vapour [hPa] (1 $hPa = 1 mbar = 100 Nm^{-2}$), *T* the temperature [K] and

$$k_{2}' = k_{2} - k_{1} \frac{R_{d}}{R_{v}} = k_{2} - k_{1} \epsilon$$

Empirical values for the constants k_i

Author(s)	$k_1 \left[K \ h P a^{-1} ight]$	$k_2 \left[K \ h P a^{-1} ight]$	$k_3 [10^5 K^2 h P a^{-1}]$
Essen & Froome, 1951 IUGG standards 1963	77.624	64.7	3.71897
Smith & Weintraub, 1953	77.607± 0.013	71.6± 8.5	3.747± 0.013
Boudouris, 1963	77.59 ± 0.08	72 ± 11	3.75 ± 0.03
Thayer, 1974	77.604± 0.014	64.79± 0.08	3.776±0.004
Hasegawa & Strokesburry, 1975	77.6±0.032	69.4± 0.146	3.701± 0.003
Liebe, 1996	77.676± 0.023	71.631	3.74656
Bevis et al., 1994 weighted	77.6	69.4	3.701
Bevis et al., 1994 unweighted	77.6± 0.05	70.4±2.2	3.739± 0.012
Rüeger, 2002 best available	77.695± 0.013	71.97± 10.5	3.75406± 0.03
Rüeger, 2002 best average	77.689±0.0094	71.295± 1.3	3.75463± 0.0076

(Values for air with 0.0375% (375 ppm) content of CO2).

Annual mean and variation of water vapour

Annual mean (thick) and variation (thin) of water vapour

Annual mean and variation of total (thick), dry (dashed) and wet (thin) refractivity.

Annual mean and variation of water vapour

- The maximum amount of water vapour that can persist in a volume of air is dependent on the air temperature. Colder air can contain less water vapour than warmer air.
- The mean water vapour per km decays very rapidly and attains zero at an height of approximately 10 km. The top of the tropopause is very dry (with respect to water vapour) due to temperatures of around 225 K.
- The spread in water vapour decays also very rapidly from values of 2.5 at the surface to zero at 10 km.
- Effect on refractivity (important for GPS):
 - Above 4 km the refractivity is dominated by the dry refractivity. The wet refractivity is 10% of the total refractivity.
 - The spread of the refractivity shows that the wet refractivity is more variable than the dry in the lowest 4 km. Moreover, both quantities are not independent, due to the dependence on temperature, as can be seen by comparing the spread of dry and wet refractivity.

Zenith Hydrostatic Delay (ZHD)

The ZHD can be written as

$$ZHD \doteq 10^{-6} \int_{h_0}^{\infty} N_h(h) dh = 10^{-6} k_1 R_d \int_{h_0}^{\infty} \rho_m(h) dh$$

Under the condition of hydrostatic equilibrium (Appendix I) we have

$$\frac{dP}{dh} = -\rho_m(h)g(h)$$

where g(h) is the acceleration due to gravity. Integration yields

$$\int_{P_0}^{0} dP = \int_{h_0}^{\infty} -\rho_m(h)g(h)dh = -P_0$$

with P_0 the surface pressure [hPa] at height h_0 . The ZHD now becomes

$$ZHD = 10^{-6} \frac{k_1 R_d}{g_m} P_0 = 10^{-6} \frac{k_1 R_d}{g_m^0} \frac{P_0}{f(\phi, h_0)} \cong 0.0022768 \frac{P_0}{f(\phi, h_0)}$$

with $g_m \doteq g_m^0.f(\phi, h_0)$ the mean gravity, $g_m^0 = 9.784 \ ms^{-2}$ and $f(\phi, h_0) = 1 - 2.66 \ 10^{-3} \cos 2\phi - 2.8 \ 10^{-7} \ h \approx 1.$

TUDelft

Zenith Wet Delay (ZWD) – IWV model

The ZWD can be written as

TUDelft

$$ZWD \doteq 10^{-6} \int_{h_0}^{\infty} N_w(h) dh = 10^{-6} (k_2' + k_3/T_m) R_v \int_{h_0}^{\infty} \rho_v(h) dh =$$
$$10^{-6} (k_2' + k_3/T_m) \int_{h_0}^{\infty} \frac{e(h)}{T(h)} dh = Q \cdot IPWV$$

with T_m a mean temperature of water vapour defined as

$$T_m \doteq \frac{\int_{h_o}^{\infty} \rho_v(h) \, dh}{\int_{h_o}^{\infty} \rho_v(h) / T(h) \, dh} = \frac{\int_{h_o}^{\infty} e(h) / T(h) \, dh}{\int_{h_o}^{\infty} e(h) / T(h)^2 \, dh} \approx 70.2 + 0.72 \, T_0$$

The Integrated Water Vapour (IWV) and precipital water vapour (IPWV) are defined as

$$IWV \doteq \int_{h_0}^{\infty} \rho_v(h) dh$$
 $[kg m^{-2}]$ $IPWV \doteq IWV / \rho_w$ $[m]$
with $\rho_w = 1000 kg m^{-2}$ the density of water and
 $Q = 10^{-6} (k'_2 + k_3 / T_m) R_v \rho_w$. The factor $Q \approx 6.5$ is dimensionless and
varies spatially and temporally.

$Q(T_s)$ from radiosonde De Bilt 1993-

CIE4608 - Lecture 3: GPS Water Vapour Retrievals

Zenith Total Delay - Summary

The Zenith Total Delay (ZTD) is the sum of ZHD and ZWD

$$ZTD \doteq 10^{-6} \int_{h_{\star}}^{\infty} [N_h(h) + N_w(h)]dh = ZHD + ZWD$$

The **<u>ZHD</u>** is a function of the **pressure** P_0 [*hPa*] at **height** h_0 and **latitude** ϕ

 $ZHD = 10^{-6} \frac{k_1 R_d}{g_m} P_0 = 10^{-6} \frac{k_1 R_d}{g_m^0} \frac{P_0}{f(\phi, h_0)} \cong 0.0022768 \frac{P_0}{f(\phi, h_0)}$ with $g_m \doteq g_m^0. f(\phi, h_0)$, $f(\phi, h_0) = 1 - 2.66 \ 10^{-3} \cos 2\phi - 2.8 \ 10^{-7} \ h_0 \approx 1$, $g_m^0 = 9.784 \ ms^{-2}$, $R_d = 287.06 \ m^2 s^{-2} K^{-1}$ and $k_1 = 77.604 \ K \ hPa^{-1}$. The accuracy is $0.5 - 2 \ mm/bar$ depending on the values used for k_1 and R_d (which may differ slightly between various models), but assuming zero error in P_0 .

The **<u>ZWD</u>** is a function of **IWV** and **mean temperature** T_m

 $ZWD = 10^{-6} (k_2' + k_3/T_m) R_v IWV \cong 10^{-6} (k_2' + k_3/T_m) \frac{R_d}{(\lambda + 1)g_m} e_0$

whereby $T_m \cong T_0[1 - \frac{1}{(\lambda+1)(\mu+1)}]$ can be computed from the temperature

Slant Delay

The delay in the line of sight, or slant total delay, can be found by

$$STD = 10^{-6} \int_0^\infty N ds = 10^{-6} \int_{r_0}^\infty N \frac{ds}{dr} dr$$
 ; $\frac{ds}{dr} = \frac{1}{\cos z} \equiv \sec z$

with z the zenith angle at each layer (changes because of curvature of the Earth). Approximations for ds/dr (ignoring the signal bending) or sec z (based on a Taylor expansion) are

$$\frac{ds}{dr} = r(r^2 - r_0^2 \sin^2 z_0)^{-\frac{1}{2}} \quad ; \quad \sec z = \sec z_0 (1 - \tan^2 z_0 \frac{r - r_0}{r})$$

This is the approach used for the Saastamoinen (1972) model.

A more modern approach is to use mapping functions,

 $STD = m_h(z_0) \cdot ZHD + m_w(z_0) \cdot ZWD$

with $m_h(z)$ and $m_w(z_0)$ the hydrostatic and wet mapping functions. Modern mapping functions are based on a continued fraction representation and some additional parameters.

Mapping functions

In the literature several mapping functions can be found:

• $m(z_0) = \sec z_0$

(Flat Earth society)

• $m(z_0) = \frac{1.001}{\sqrt{0.002001 + \cos^2 z_0}}$

(RTCA-MOPS, Collins, 1999)

•
$$m(z_0; a, b, c) = \frac{1 + a/(1 + b/(1 + c))}{\cos z_0 + \frac{a}{\cos z_0 + \frac{b}{\cos z_0 + c}}}$$

(continued fractions)

Mapping functions using continued fractions

Most modern mapping functions use continued fractions. The mapping function used by Ifadis (1992), Herring (1992) and Niell (1996) is

$$m(z_0; a, b, c) = \frac{1 + a/(1 + b/(1 + c))}{\cos z_0 + \frac{a}{\cos z_0 + \frac{b}{\cos z_0 + c}}}$$

Í UDelft

with z_0 the zenith angle*). Clearly m(0) = 1. The coefficients have been computed from ray-tracing radiosonde and other data. For the hydrostatic and wet mapping functions different coefficients are used.

If a dis (1992) gives the coefficients as function of P_0 , T_0 , and e_0 , Herring (1992) gives them as function of latitude ϕ , height h_0 and T_0 .

Niell (1996) uses values independent from surface meteorological data

$$a_{\rm h}(\phi, doy) = a_{{\rm h};{\rm avg}}(\phi) + a_{{\rm h};amp}(\phi) \cos[2\pi \frac{doy-28}{365.25}]$$
; $a_w(\phi)$

with $a_{h;avg}(\phi)$, $a_{h;amp}(\phi)$ and $a_w(\phi)$ tabulated for $\phi = 15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}$, with similar expressions for the other coefficients. The Niell mapping functions can be used for elevation angles down to 3° .

*) In Marini (1972), Chao (1974) and Davis (1985) slightly different expressions were used.

Niell mapping function

coeff.	$\phi = 15^{\circ}$	$\phi=30^\circ$	$\phi = 45^{\circ}$	$\phi = 60^{\circ}$	$\phi = 75^{\circ}$
$a_{avg} \\ b_{avg}$	1.2769934e-3	1.2683230e-3	1.2465397e-3	1.2196049e-3	1.2045996e-3
	2.9153695e-3	2.9152299e-3	2.9288445e-3	2.9022565e-3	2.9024912e-3
c_{avg}	62.610505e-3	62.837393e-3	63.721774e-3	63.824265e-3	64.258455e-3
a_{amp}	0.0	1.2709626e-5	2.6523662e-5	3.4000452e-5	4.1202191e-5
b_{amp}	0.0	2.1414979e-5	3.0160779e-5	7.2562722e-5	11.723375e-5
c_{amp}	0.0	9.0128400e-5	4.3497037e-5	84.795348e-5	170.37206e-5
a_{wet}	5.8021897e-4	5.6794847e-4	5.8118019e-4	5.9727542e-4	6.1641693e-4
b_{wet}	1.4275268e-3	1.5138625e-3	1.4572752e-3	1.5007428e-3	1.7599082e-3
c_{wet}	4.3472961e-2	4.6729510e-2	4.3908931e-2	4.4626982e-2	5.4736038e-2

$$\begin{split} m_h(z_0;\phi,doy,h_0) &= m(z_0;a_h,b_h,c_h) + [\sec z_0 - m(z_0;2.53\ 10^{-5},5.49\ 10^{-3},1.14\ 10^{-3})]\ h_0\ [km] \\ a_h(\phi,doy) &= a_{h;avg}(\phi) + a_{h;amp}(\phi)\cos[2\pi\frac{doy-28}{365.25}] \quad ; \ a_w(\phi) \\ m(z_0;a,b,c) &= \frac{1 + a/(1 + b/(1 + c))}{\cos z_0 + \frac{a}{\cos z_0 + \frac{b}{\cos z_0 + \frac{b}{$$

TUDelft

Troposphere Slant Delay - Conclusion

The Slant Tropsphere Delay (STD) can be written as

 $STD = m_h(z_0) \cdot ZHD + m_w(z_0) \cdot ZWD$

with $m_h(z)$ and $m_w(z_0)$ the 'known' hydrostatic and wet mapping function. The Zenith Hydrostatic Delay (ZHD) is a function of the **pressure** P_0 [hPa] at **height** h_0 and **latitude** ϕ , with

$$\begin{split} ZHD &= 10^{-6} \int_{h_0}^\infty N_h(h) dh &\cong 0.0022768 \frac{P_0}{f(\phi,h_0)} \\ \text{with } f(\phi,h_0) &= 1-2.66 \; 10^{-3} cos 2\phi - 2.8 \; 10^{-7} \; h_0 \; \approx 1 \; . \end{split}$$

The Zenith Wet Delay (ZWD) is a function of Integrated Water Vapour **IWV** [kg/m²] and **mean temperature** T_m

 $ZWD = 10^{-6}(k_2' + k_3/T_m)R_v IWV \cong Q(T_s) IWV$

Use of NWP data for correcting GPS data

- New generation of mapping functions based on ECMWF data (IMF, GMF, VMF1)
- Direct use of NWP products (to reduce systematic errors)
 - Mapping function replacement (e.g. Vienna Mapping Function
 VMF1
 - A-priori zenith hydrostatic delay
 - Zenith wet delay is still to be estimated
- Direct use of NWP products (for Network RTK)
 - ZTD, ZWD and Mapping function
 - Direct computation of slant delay
 - → No troposphere parameters have to be estimated

Vienna Mapping Functions (VMF1)

[Boehm et. al, 2006, 2007, 2008]

- Mapping functions in continued fraction (with *a*, *b*, and *c* coefficients) and accompanying zenith delays derived from ECMWF reanalysis
- Hydrostatic b and c coefficients derived from a lsq fit to ray-traced observations at 9 elevation angles; b=0.0029 and c is a 3-parameter function (fixed values) of latitude and day of year.
- The wet (non-hydrostatic) *b* and *c* coefficients are the same as NMF [Niell, 1996] at 45° latitude, and equal to 0.00146 and 0.04391.
- The hydrostatic and wet *a* coefficients are determined from direct ray tracing through the ECMWF analysis on a 6 hour basis at initial elevation angle 3.3^o (the outgoing angle will be approx. 3^o), and then inverting the continued fraction equation using the previously determined *b* and *c* coefficients.
- The *a* coefficients are provided on a 2.0° X 2.5° lat/lon grid at 0, 6, 12, and 18 UT for zero height (user need to correct for station height).
- The ZHD and ZWD are also provided in gridded format at mean grid height given by the orography file (user must correct to station height).

Ray-tracing in the VMF1

For a spherical earth with spherical layered atmosphere Snell's law we have

The hydrostatic and wet a coefficients are determined from direct ray tracing through the ECMWF analysis on a 6 hour basis at initial elevation angle 3.3^o (the outgoing angle will be approx. 3⁰). Raytracing through the model layers gives the slant delay, as well as the mapping function value (slant / zenith delay). Inverting the continued fraction equation, using the empirically determined b and ccoefficients, gives the *a* coefficient.

Vienna Mapping Functions (VMF1) – cont'

- Originally the VMF1 was produced on a site specific basis -> but use of gridded data is now recommended
- Gridded VMF1 coefficients are available with for each parameter four files per day, i.e. at 0, 6, 12, and 18 UT, with a latency of 2.5 days
- Grids are also determined from forecast data of the ECMWF, but in this case a password is needed.
- GMF (Global Mapping Function) is a 'backup' mapping function for VMF1 similar to Niell NMF mapping function (input parameters are day of year, latitude, longitude and height).
- In 2012 UNB started to provide UNB-VMF1, which is a independent solution based on the NOAA-NCEP model and alternative ray-tracing algorithm [Urquhart et.al., 2011]. The agreement with VMF1 is very good.
- Using VMF1 or UNB-VMF1 can affect the estimated station heights by +- 2 mm (10 mm in the worst case) when compared to NMF; estimated ZWD are affected as well (factor 3 larger). [Kouba, 2008]

Vienna Mapping Functions (VMF1) – extra's

Some extra data can be provided from the ECMWF model:

- An empirical model to determine pressure and temperature from the station coordinates and the day of the year.
- The height of the 200 hPa pressure level which is the input parameter for the hydrostatic IMF is provided on a grid.
- The mean temperature of the atmosphere (in Kelvin) which can be used to convert the wet zenith delays into precipitable water is provided on a grid
- Hydrostatic and wet linear horizontal gradients are provided for the same stations where VMF1 site is available.

